_ Theoretica
Theor Chim Acta (1989) 76: 125-135 Ol
* o ChimicaActa

© Springer-Verlag 1989
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Summary. We describe the geometric, electronic and energetic (4H ) proper-
ties of B,HZ and BHj; . Comparisons with experimental measurements have
also been made with borane, diborane, BH, BH* and BH;. All the
theoretical calculations have been performed with various basis sets: 6-31G,
6-31G** and 6-31"G**(24, f). The geometry optimizations are done at the
SCF (RHF or UHF), MP2 and MP4 levels.
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1. Introduction

Although boranes have been known for a long time [1], there is still a lot of
interest in them [2]. During the fifties and the sixties many experimental
appearance potential measurements for the fragmentations of borane and dibo-
rane into ions such as B,H, and BH;} with n =0 to 6 and m =0 to 3 were
reported. Even if appearance potentials can be measured within an accuracy of
+1072 eV and even if the simplest set of assumptions suffice for interpreting the
data, the heats of formation of those ions remain uncertain. Indeed, the chemical
processes which produce fragments are not always known and activation energies
can alter the thermochemical values deduced from the appearance potentials.
Moreover, AH, determination for the ions requires accurate values for the heats
of formation of borane and diborane. Efforts have been made during the last ten
years to evaluate those quantities. From the experimental point of view, the short
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lifetime of BH; prevents the direct determination of its energy. From the
theoretical point of view, the most accurate quantum chemical methods and the
largest basis sets are needed to reach sufficiency accurate energies. At least
polarized basis set are required [3] to get reliable stationary points on potential
energy hypersurfaces. For example, a transition state with a 6-31G basis may in
fact correspond to equilibrium structures with larger basis sets [4]. For the simple
boron hydrides, Pople [5] has pointed out that the empirically derived heats of
formation have been overestimated. Similarly, only high level theoretical meth-
ods give agreement with experimental values for the binding energy of borane.
Calculated values between 35 [6] and 40 [7] kcal mol ! may be compared with
35.5 [8] from kinetic studies, 37 to 39 [9] from electron impact measurements and
39.3 4+ 6 [10] from recommended heats of formation from the JANAF tables
[18]. The understanding of the electronic structure of boron derivatives including
positive and negative ions has also been a subject of extensive study. One finds
that similarities exist between boron and the carbon chemistry when both neutral
molecules and ions (positive or negative) [11] are considered. The X.H.X bridged
bond appears to be like protonated single (e.g. B,H; [12]), double (e.g. B,H, or
C,Hj * [13)) or triple (B,Hs [11]) bonds. Usually, one has more electron pairs
than hydrogen atoms at one’s disposal to build the electron description. This is
not the case with ions such as BH; and B,Hg . The electronic description of
such chemically electron deficient compounds is of interest. Also note that BH;
is isoelectronic with CH;* [14].

2. Results and discussion

Table 1 gives the geometrical parameters for the stationary points (at various
theoretical levels). For BH; , we obtain three equilibrium structures. Two of them
correspond to the association complexes BH - - - H and BH™* - - - H,. The first
(BHS - - - H) has already been mentioned in a recent paper [15] as an alternative
ion structure; however, we prefer to consider these structures as molecular
complexes than as simple ions. (The electron distributions confirm this opinion.)
From a geometrical point of view, BH} and B,H{ show large basis set and
correlation effects; the molecular complexes seem to be particularly sensitive. For
these compounds, accurate prediction requires post SCF (self consistent field)
calculations (at least MP2) and polarized basis set (such as 6-31G**). For more
conventional molecules or ions (where all bonds are at least two electron bonds),
a single SCF treatment with polarized basis gives quite acceptable structures [16].

Table 2 shows the total energies obtained at different levels. The “‘extrapo-
lated” values are obtained assuming additivity in the basis set expansion when one
adds diffuse functions such as a second set of d or f functions to the polarized basis
set. Some authors [17] use this procedure to obtain energies as accurately as
possible; one of them [17b] writes:

Enmpa(6-31G**(2d, ) ~ Eypa(extrapolated)
= Bypa(6-31 + G**) + Eppa(6-31G**(2d)
+ Empa(6-31G**(f)) — 2Epmpa(6-31G*¥). (b
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When we compare the values obtained by such additivity assumptions (using the
SCF equilibrium geometry) with more accurate MP4/6-31 + G**2df/MP4/6-
31G** energies, we observe quite negligible differences. This confirms that the
procedure introduced by Pople is an economical way to obtain reliable energies.
Finally, basis set and correlation effects are both important. Choosing the energy
of BH™ + H, as the zero of energy, we find at the MP4 level the following
energies (assuming relation (1)):

[BH:--H,]* —23.5kcalmol~! BHS +H ~15.3 kcal mol !
BH; —32.0kcalmol~! [BH,---H]* —29.9 kcal mol™!

The [BH, - - - H] * molecular complex lies on the dissociation path of BH; into
the BH} and H fragments. The second complex ((H,:--BH]") lies on the
dissociation path into H, and BH™. On the potential energy hypersurface, both
complexes must be separated from the BH; ion by transition structures. Finally,
let us note that other dissociation products such as BH + H;" and BH, +H™,
are, respectively, 134 and 112 kcal mol~" higher in energy than BH™ + H, (at the
MP4/6-31 + G**2df//MP4/6-31G** level).

It is now possible to evaluate the heats of formation of the compounds of
interest, as long as we include the zero point energies. Assuming a quadratic
approximation for the potential energy hypersurface (close to the equilibrium
structure), we can determine the frequencies of vibration by solving the CPHF
(coupled perturbed Hartree-Fock) equations. As the frequencies obtained at the
single determinantal level are usually overestimated, we have scaled the single
determinant values using a relation previously established [4]:

Nu(adjusted) = —65.238 + 0.9556 Nu(6-31G**) = Nu(Exp). (2)

Statistical thermodynamics then gives access to the thermal correction
(4H(00 —298K)), the standard entropy and the heat capacity. Values for BH;,
B,Hs, BH;, BH, BH*, H, and H have been reported [4]; for borane and
diborane positive ions, we calculated the following frequencies (cm™') at the
SCF/6-31G** level:

for B,H{ 267 565 625 693 731 999 1007 1010 1094
1221 1525 1593 1925 2337 2492 2513 2801 2951
for BH; 484 936 1045 1788 2328 3005

for [BH, --H]* 505 827 1023 1066 2775 3013
for [BH---H,]* 761 940 1162 1762 2934 3379

After scaling, one finds the following thermodynamic properties:

AH(00 - 298K) s° c,
(kcalmol™')  (calmol=!K~') (calmol 'K~
B,H} 37.67 16.72 61.01
BH; 15.18 10.54 49.57
[BH, - - - H]* 14.70 11.08 51.75

[BH---H,]* 16.90 9.83 50.51
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Using the so-called “isogyric” approach of Pople [17], we have deduced the heats
of formation reported in Table 3. Comparison with recommended experimental
heats of formation shows the theoretical set of values are underestimated.
Nevertheless, both sets of values correlate nicely (4H (reference) = 6.266 + 0.995
AH(Theoretical) with a correlation coefficient close to one). In terms of observ-
ables (see Table 4), one finds that the experimental measurements neither
correlate better nor worse with values deduced from theory than with those
deduced from reference heats of formation:

Observab]é(Experiment) = 7.881 + 0956 Observable(Theoretical) (r =1.00)
Observable( Experiment) = 3.515 + 0.973 Observable(4 H,(Reference)) (r = 1.00)

Techniques such as those here used are known [20] to be accurate within
+2-3 kcal mol~!. Hence the reliability of theory compared to experiments on
transient species can be trusted. In addition the experimental determinations on
the boron derivatives are difficult. Thus we conclude that our theoretical
predictions are reliable.

Finally, we describe the electronic distribution in BH; and B,Hg . Boy’s
localization of the UHF (Unrestricted Hartree—Fock) (6-31G**) wave function
produces a map of centroids (for both alpha and beta localized orbitals) which
can be associated with a molecular graph [21]. Figure 1 shows representations of
the electronic structures. The BH; complexes correspond well, from the elec-
tronic point of view, with our description: H, - - - BH* has an unshared electron
on the boron atom and a pair of electrons binding the two hydrogen atoms; in

Table 4. Comparison between observables calculated from the theoretical 4H,, from the recom-
mended AH, with the measured values® (kcal mol—1)

Observable Prediction® From AH;(Ref.) Measurement References [25]
A"(B,H{) 264.45 262.43 262.43 +0.2 Bru70
A"(BH3) 318.00 323.39 343.14 + 1.1 Wil67
A’(BH{) 279.35 284.10 284.10 +2.3 Wil67
282.26 +2.3 Gan69
A’'(BHS) 295.00 298.63 298.63 +2.3 Wil67
A’(BH™) 309.86 310.30 315.00 +0.5 Wil67
A'(B™) 356.00 351.10 365.05 Wwil67
I(BH) 226.59 226.74 225.30 +1.15 Bau64
1(B) 189.59 188.41 191.35 Wil67
BDE(H-B; )¢ 15.65 14.53 14.53 Wwil67
BDE(H-BH™)® 119.05 115.87 99.16 Wil67
BDE(B-H)c 83.16 79.13 83.94 Wil67
BDE(H-B™)*° 46.15 40.80 50.04 Wil67
BDE(BH,-BH;)° 38.65 39.29 3440 [26]

Remarks: 4’ stands for the appearance potential from BH; and A" from B,H; BDE are bond
dissociation energy and / means ionization potential

2 with MP4/6-31 + G**(2d, f)//MP2/6-31G** energies

b Experimental values have been selected according to the best accuracy of measurement

¢ Calculated values
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Fig. 1. Map of charge centroids for BH; and B,H; . The “plus” sign indicates the position of a
centroids of charge corresponding to an alpha localized orbital and the “cross™ sign stands for the
corresponding beta centroid. a B,H ; b BH; ; ¢ complex H,-BH™; @ complex HBH;

H- .- BH;, a hydrogen is bound to a quasi-linear BH; ion. BH; is distorted
from the D,, symmetry of the neutral borane. This geometrical distortion results
in lengthening two B-H bonds. From the electronic point of view, these two
hydrogens together with the boron form a three electron-three center bond: one
finds one alpha centroid of charge on each B(1)-H(3) and B(1)-H(4) bond; the
corresponding beta electron lies in a localized orbital formed by atomic functions
lying on the three centers (chiefly 2s and 2p boron orbitals and 1s hydrogen
atomic function). The B,H ion shows a similar geometrical distortion and
electronic features for one of its two BH, terminal groups.

Finally, comparing BH; with the isoelectronic ion CH; * [12], one observes
that BH; has two large BH bonds (1.26 A) forming a relatively small angle
(70°), whereas CHi * has one large CH bond (1.56 A) and one large HCH angle
(155°) between the other two CHs. Thus BH;" has a nuclear structure close to the
H, - - BH" complex and CH; ¥ resembles the H - - BHS complex.

3. Conclusions
Large basis sets and calculations beyond the SCF level are required to give

reliable descriptions of ions such as BHi and B,H¢ . This is true both for
geometries and energies, due to the unusual three electron-three center bonds
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encountered in such species (see Fig. 1). We have characterized three minima for
BHj . Discarding possible molecular complexes, we find only one minimum on
the B,H; potential energy hypersurface. The heats of formation we determine
seem to be several kcalmol~! (up to 9 kcal mol™') lower than the accepted
values (this has already been mentioned by other authors [5-7] for borane and
diborane). Nevertheless, the appearance potentials deduced from our theoretical
heats of formation compare well with the corresponding experimental values.
Moreover, the type of calculation performed here is expected to be accurate to
within 2-3 kcal mol~".
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